
A Cyclostationarity Analysis Applied to Image Forensics

Babak Mahdian and Stanislav Saic
Institute of Information Theory and Automation of the ASCR
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Abstract

The processing history of images plays an important role
in many fields of digital image processing and computer vi-
sion. In this paper, we focus on geometrical transforma-
tions and show that images that have undergone such trans-
formations contain hidden cyclostationary features. This
makes possible employing the well–developed theory and
efficient methods of cyclostationarity for blind analyzing of
history of images in respect to geometrical transformations.
To verify this, we also propose a cyclostationarity detection
method and show how the traces of geometrical transforma-
tions in an image can be detected and the specific parame-
ters of the transformation estimated. The method is based
on the fact that a cyclostationary signal has a frequency
spectrum correlated with a shifted version of itself.

1. Introduction
The knowledge of image’s geometric history plays an

important role in image compression, image registration,
medical image analysis, image retrieval, digital publishing,
etc. Furthermore, it has a crucial role in image forensics.
Here the detection of traces of geometrical transformations
signifies photo manipulation (for example, see [13, 9, 6]).
Moreover, when applying a statistical–based method to an
image, without knowing the processing history of this im-
age and how the statistics of the image has been changed,
we can expect miscalculations and unexpected results. The
core of the paper is based on the cyclostationarity theory,
which is an attractive and novel one for the computer vision
and pattern recognition community.

The term cyclostationarity refers to a special class of sig-
nals which exhibit periodicity in their statistics. In this pa-
per, we focus on geometrical transformations and show that
images that have undergone such transformations contain
hidden cyclostationary features. This will justify employ-
ing the well–developed theory of cyclostationarity and its
efficient methods for analyzing images’ history in respect to
geometrical transformations. We analytically show that the

cyclostationarity is brought into the signal by the interpola-
tion process (nearest neighbor, linear, cubic, etc.). The in-
terpolation process is present in almost every image resizing
or rotation operation. Interpolation has a long history and
probably started being used as early as 2000BC by ancient
Babylonian mathematicians 1. Despite this long history, the
massive usage of interpolation and its importance in digi-
tal signal processing, to our knowledge, there exist only a
few published works concerned with the specific changes
brought into the signal by this process [13, 10, 7, 1]. The
knowledge that interpolated/resampled images are defacto
cyclostationary signals makes possible a new point of view
to such images and justifies employing existing efficient cy-
clostationarity detectors to improve the results of mentioned
methods.

One of the most important properties of a cyclostation-
ary signal is the existence of specific correlation between
its spectral components [4]. Based on this knowledge, we
also propose a cyclostationarity detection method capable
of determining whether a given digital image is a result of a
geometric transformation. If so, the method also can deter-
mine the specific parameters of transformation.

Comparing the method described in this paper with [13]
shows, that the latter one is based on a complex and time–
consuming expectation-maximization algorithm (EM). Our
method uses a simple and fast method for detecting cyclo-
stationary features and achieves very similar results. Fur-
thermore, the output of the method in [13] and the conver-
gency of their EM part directly depend on several initializa-
tion parameters. Our method does not need any parameters
initialization and work in a complete blind way.

2. Cyclostationarity

In the last half a century a lot of work has been done in
the field of cylcostationarity [5]. Much of the initial work
introducing and examining the use of cyclostationary mod-

1For instance, it had an important role in astronomy which in those days
was all about time–keeping and making predictions concerning astronom-
ical events [11].
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els in the signal analysis was carried out by W. A. Gardner
et al. [3, 4, 2].

A zero–mean signal f(x) is defined to be second order
cyclostationary if its second order statistics is periodic. The
autocorrelation function of f(x) can be defined as

Rf (x, δ) = E{f(x)f∗(x + δ)}, (1)

because of its periodicity in x, we can represent it in the
form of a Fourier series expansion:

Rf (x, δ) =
∑
α

Rα
f (δ)ej2παx, (2)

where α is the cyclic frequency. The parameter Rα
f is called

Cyclic Autocorrelation Function (CAF) and it is a funda-
mental parameter of cyclostationarity. CAF is defined as:

Rα
f (δ) = lim

X→∞

1
X

∫ X/2

−X/2

Rf (x, δ)e−j2παxdx (3)

An appropriate way of analyzing cyclostationary properties
is by applying the Fourier Transform (FT) to Rα

f . The result
is called Spectral Correlation Function (SCF) and is defined
as:

Sα
f (u) =

∫ ∞

−∞
Rα

f (δ)e−j2πuδdδ (4)

As we will deal with discrete signals, the discrete version of
CAF should also be defined here:

Rα
f (l) = lim

N→∞

1
N

N−1∑
m=0

f [m]f∗[m + l]e−j2παm∆m, (5)

where N and ∆m denote the number of samples of the sig-
nal and sampling interval, respectively. Equivalently, the
discrete SCF can be obtained by:

Sα
f (u) =

∞∑
l=−∞

Rα
f (l)e−j2πul∆l (6)

CAF and SCF are analogous to the autocorrelation function
and power spectral density function for stationary signals.
When α = 0, the SCF can also be interpreted as power
spectral density of the signal. For other values of α, SCF
is cross–spectral density between the signal and the signal
shifted in frequency by α. So, if the signal being analyzed
exhibits cyclostationarity, SCF will be non–zero for some
α 6= 0. Otherwise, only for α = 0 we will have non–zero
values.

3. Cyclostationary Properties of Resampled
signals

In the next section, we will employ the theory of cyclo-
stationarity for finding the traces of geometric transforma-

tions. To be able doing so, first we should show their pe-
riodically varying properties. To achieve this, we will as-
sume the following simple, linear and stochastic model and
assumptions:

f(x) = (u ∗ h)(x) + n(x) (7)

where f , u, h, ∗, and n are the measured image, origi-
nal image, system point spread function (PSF), convolu-
tion operator, and random variable representing the influ-
ence of noise sources statistically independent from the sig-
nal part of the image (E{n(x)} = 0). If we consider the
first part of equation (7) to be deterministic, the covari-
ance of equation (7) can be shown to be Rf (x1, x2) =
Cov{f(x1), f(x2)} = E{(f(x1) − f(x1))(f(x2) −
f(x2))} = Cov{n(x1), n(x2)} = Rn(x1, x2), where Rf

is the covariance matrix of measured image f(x), and Rn

is the covariance of random process n(x).
By fk we will denote a discrete signal representing the

samples of f(x) at the locations k∆, fk = f(k∆), where
∆ ∈ R+, is the sampling step and k ∈ N0.

There are two basic steps in geometric transformations.
In the first step a spatial transformation of the physical re-
arrangement of pixels in the image is done. Coordinate
transformation is described by a transformation function, T ,
which maps the coordinates of the input image pixel to the
point in the output image (or vice versa):

x
′
= Tx(x, y) y

′
= Ty(x, y) (8)

The second step is the interpolation step. Here pixels in-
tensity values of the transformed image are assigned using
a constructed low-pass interpolation filter, w. As the word
interpolation signifies2, the interpolation process can be de-
scribed using the following convolution:

fw(x) =
∞∑

k=−∞

fkw(
x

∆
− k) (9)

The sinc function is hard to implement in practice be-
cause of its infinite extent. Thus, many different simpler
interpolation kernels of bounded support have been inves-
tigated and proposed so far. We will be concerned with
following low-order piecewise local polynomials: nearest-
neighbor, linear, cubic and truncated sinc. These polyno-
mials are used extensively because of their simplicity and
implementation unassuming properties. As will be shown,
these interpolators bring noticeable periodic artifacts into
the signal.

As pointed out in [14, 10], the covariance function of an

2The word ”interpolation” originates from the Latin word ”inter”,
meaning ”between”, and verb ”polare”, meaning ”to polish” [11].
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interpolated signal is given by:

Rfw(x, x + ξ) =
∞∑

k1=−∞

∞∑
k2=−∞

w(
x

∆
− k1)w(

x + ξ

∆
− k2)Rf (k1, k2)

(10)

If we assume constant variance random process, then the
variance of fw, var{fw(x)}, as a function of the position
x can be represented in the following way:

var{fw(x)} = Rfw(x, x) = σ2
∞∑

k=−∞

w(
x

∆
− k)2 (11)

where σ2 = Rn(k1, k2). This equation can be obtained if
Rf (k1, k2) has a short–range correlation [14]. Similarly,
the covariance can be represented like:

Rfw(x, x + ξ) = σ2
∞∑

k=−∞

w(
x

∆
− k)w(

x + ξ

∆
− k) (12)

Now, by assuming that ϑ is an integer, we can notice that

var{fw(x)} = var{fw(x + ϑ∆)}, ϑ ∈ Z (13)

Thus, var{fw(x)} is periodic over x with period ∆. We
verify this in the following way:

var{fw(x + ϑ∆)} = σ2
∞∑

k=−∞

w(
x + ϑ∆

∆
− k)2

= σ2
∞∑

k=−∞

w(
x

∆
− (k − ϑ))2

= var{fw(x)}

(14)

Very similarly, it can be shown that the covariance of fw,
Rfw(x, x + ξ), is periodic in the same way.

4. Detecting Cyclostationarity
The previous section showed that resampled images con-

tain cyclostationary features. Many efficient methods capa-
ble of detecting cyclostationary features [5, 15] have been
proposed so far.

Theory of cyclostationarity has shown that a cyclosta-
tionary signal has a frequency spectrum that is correlated
with a shifted version of itself [2]. Based on this, we focus
on detecting the traces of cyclostationarity by estimating the
spectral correlation function. To estimate the SCF, we can
simply use equation (6). But, due to its computational com-
plexity, instead of this, we rather use a more computation-
ally effective SCF estimation method based on Fast Fourier
Transform (FFT). FFT algorithm has computational com-
plexity O(nlog2n).

Let’s say f(x, y) is the image being analyzed and
F (n, u) is a matrix containing FFT of image’s rows (i.e.,
F (1, u) contains the one–dimensional FFT of the first row
of f(x, y)). The SCF can be estimated in the following way:

Sα
f (u) =

1
N

N−1∑
n=0

Fn,u · F ∗n,u+α, (15)

where ∗ denotes complex conjugate and N is the number of
image’s rows.

Data obtained can be combined together to create the re-
sulting correlation map:

ρf (α) =
∑

u

|Sα
f (u)|2 (16)

To demonstrate the method’s output obtained using
equation (16), we apply it to several images resized by var-
ious scaling factors, see Figure 1. Here, to get clear peaks,
columns of F (n, u) were scaled to have values between 0
and 1. As apparent from Figure 1, cyclostationary features
resulting from the scaling operation are exhibited by dis-
tinctive peaks.

4.1. Adaptation of the Proposed Method

The method so far presented works well (produces clear
peaks) when the scaling rate is big enough to introduce
strong correlation into the image. When the image is trans-
formed by a lower scaling rate, the cyclostationary fea-
tures are not strong enough to be detectable using the basic
method (see Figure 1 (c)). This drawback can be overcome
using a traditional way based on passing the analyzed image
through a set of band–pass filters. We use a set of deriva-
tive filters as band-pass filters. If f(x, y) denotes the image
being analyzed, then dn is a band–passed image containing
the horizontal and vertical derivative approximations:

dn = dn
h ∗ dn

v ∗ f(x, y), (17)

where n denotes the order of the derivative filter. The fol-
lowing first order horizontal and vertical derivative filters
formed our filters for derivative approximations:

d1
h = [−1 1], d1

v =
[
−1
1

]
(18)

Using these filters we get significantly more accurate
and robust outcomes. After performing various experiments
with resized images of different structures, content, bright-
ness and noise characteristics we achieved good results us-
ing only a lower and a higher derivative filter. The proposed
method works by seperately applying equation (15) using
d1 and d5:

ρd1(α) =
∑

u

|Sα
d1(u)|2

ρd5(α) =
∑

u

|Sα
d5(u)|2

(19)
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(a) (b) (c)

(d) (e) (f)

Figure 1. Each column shows an example image and its corresponding correlation map obtained by application of equation (16) to the
resized version of this image. The used scaling rates were (from left to right) 1.32. 1.7 and 1.2. In all cases the bicubic interpolation has
been used. The distinctive peaks signify the resizing procedure. The application of the basic method to Figure 1 (c) failed.

(a) (b) (c)

(d) (e) (f)

Figure 2. A few examples of the method’s output. In (a) the output of the image applied to the non–resized version of Figure 1 (a) is shown.
As apparent, there is no clear peak. (b) and (c) show the output of the method for resized Figure 1 (a) with scaling rates 1.04 and 4.27,
respectively. (d) and (e) show the output of the method for resized Figure 1 (b) with scaling rates 0.93 and 1.03. In (f) the output of the
method applied to the scaled version of Figure 1 (c) with scaling rate 1.22 is shown. In all cases the bicubic interpolation has been used.

If the image being analyzed has been geometrically
transformed, then at least one of the correlation maps
ρd1(α), ρd5(α) will exhibit a detectable peak (see Figure

2). In all examples, the method has been applied to the
green color band.

Detected peaks are directly related with the scaling rate.
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Figure 3. Decomposition of the Bayer CFA into three sub-sampled
lattices.

So, using the position of the occurred peak, the particular
scaling rate can be estimated. For example, when assum-
ing the upsampling operation and a will denote the position
of the peak in interest obtained by applying the method to
f(x, y), then the scaling rate can be estimated in the follow-
ing way: s = y

y−a .

4.2. Other Geometric Transformations

The method proposed so far works only for scaling.
There are several ways how to apply it to other geomet-
ric transformations. For example, when dealing with ro-
tation, it is possible to apply the method in various direc-
tions. The direction which includes strong cyclostationary
features will exhibit with strong peaks in the method’s out-
put. This idea works not only for rotation, but also for gen-
eral affine transformations.

5. Influence of Color Filter Array Interpola-
tion and JPEG

As color filter array (CFA) interpolation and JPEG com-
pression bring into the image a specific periodicity, it could
be interesting to show their influence on method’s output.

5.1. CFA Interpolation

Many digital cameras are equipped with a single charge
coupled device (CCD) or complementary metal oxide semi-
conductor (CMOS) sensor. At each pixel location only a
single color sample is captured. The color images are typ-
ically obtained in conjunction with a CFA [8]. The most
commonly used CFA is called Bayer CFA after the name
of its inventor 3. As shown in Figure 3, it consists of al-
ternating red and green pixels on odd lines and green and
blue pixels on even lines. Missing colors are computed by
an interpolating process, called CFA interpolation. There
are many CFA interpolation algorithms leading to different
results (bilinear, bicubic, median–based, gradient–based,
SHT, adaptive, directional filtering, etc.). Some of these in-
terpolation methods bring into the image a strong periodic
correlation (for example, bilinear CFA).

Let’s assume the most simplest CFA – the bilinear. Here
to obtain the red pixel R at position (2, 2) and position (3, 2)

3Doctor B.E. Bayer from Eastman Kodak

in the grid (see Figure 3) the following equations are used:

R2,2 =
R1,1 + R1,3 + R3,1 + R3,3

4

R3,2 =
R3,1 + R3,3

2

(20)

As apparent, pixels of bilinear CFA image are perfectly pe-
riodically correlated to their neighboring pixels. Thus, we
can expect in the output of the method a peak correspond-
ing to this interpolation while the image being analyzed was
not resized. Output of the method applied the non-resized
bilinear CFA reconstructed version of Figure 4 (a) is shown
in Figure 4 (b).

Figure 4 (c) shows the output of the method to the re-
sized version (scaling rate 1.25) of the bilinear CFA image
shown in Figure 4 (a). As apparent, the peak corresponding
to the scaling transformation is clear and traces of CFA in-
terpolation are defeated. Figure 4 (d) shows the output of
the image applied to non-resized Figure 4 (a) reconstructed
using a more today CFA interpolation method [12] based on
directional filtering. As apparent, the traces of CFA interpo-
lation have no false–positive effect on the method’s output.
Experiments of this section were carried out using the red
color band.

The early CFA interpolation methods (for example, bi-
linear) which bring into the image perfect periodic correla-
tion may cause false peaks. Fortunately, these methods are
not commonly used in digital cameras.

(a) (b)

(c) (d)

Figure 4. Effect of CFA interpolation. (a) shows the analyzed im-
age. In (b) non–resized bilinear, (c) resized bilinear CFA (scaling
rate 1.25) and (d) non–resized directional filtering CFA are shown.
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Table 1. Detection accuracy [%]. Each cell corresponds to the
average detection accuracy from 1000 images.

scaling rate 0.75 0.80 0.85 0.90 0.95
accuracy 25 90 92 98 100

scaling rate 0.97 1.00 1.03 1.05 1.10
accuracy 100 95 100 100 100

scaling rate 1.20 1.40 1.50 1.60 1.70
accuracy 100 100 100 100 100

scaling rate 1.80 1.90 2.00 2.10 2.20
accuracy 100 100 100 100 100

5.2. JPEG Compression

As it is well–known, the JPEG compression technique
divides the image into 8 × 8 pixel blocks to which dis-
crete cosine transform (DCT) based coding is applied. This
blocking artifact brings into the image a periodicity pro-
ducing peaks at method’s outputs at positions 1

8y · · · 7
8y.

This effect is visible by applying the method to JPEG com-
pressed images with quality factor 90 and lower. Of course,
the visibility of peaks also depends on image’s characteris-
tics.

6. Quantitative Experiments

The method has been applied to 1000 images undergone
various scaling transformations. The size of the investigated
images was 512 × 512 pixels. All experiments were car-
ried out in Matlab. In all cases never–compressed images
have been used. Table 1 shows the detection accuracy of
the method applied to bicubic resized images. The detec-
tion accuracy expresses the success of the method in ex-
pressing the interpolation by a clear and easily detectable
peak either in ρd1(α) or ρd5(α). Note that the detection is
nearly perfect for scaling rates greater than 0.90. Here, the
amount of the cyclostationary features is strong enough to
be detectable. When the image is downsampled, the power
of cyclostationary features brought into the signal is weak-
ened and a lot of information is lost (due to downscaling).
This makes the detection of downsampling difficult. Shown
statistics for scaling rate 1 (non–resized) corresponds to the
false positives rate of the method. Here, if no peaks are
found, the image is denoted as non–resized.

7. Conclusions and Further Research

Results obtained are promising and show that employing
cyclostationarity methods can be effective in many applica-
tions in computer vision and pattern recognition. Further
research might explore application and evaluation of vari-
ous types of cyclostationary feature detection methods, use
of filter banks and extension to other geometric transforma-
tions.

Acknowledgements

This work has been supported by the Czech Science
Foundation under the project No. GACR 102/08/0470.

References
[1] A. C. Gallagher. Detection of linear and cubic interpolation

in jpeg compressed images. In CRV ’05: Proceedings of the
The 2nd Canadian Conference on Computer and Robot Vi-
sion (CRV’05), pages 65–72, Washington, DC, USA, 2005.
IEEE Computer Society.

[2] W. A. Gardner. The spectral correlation theory of cyclosta-
tionary time-series. Signal Process., 11(1):13–36, 1986.

[3] W. A. Gardner. Statistical spectral analysis: a nonproba-
bilistic theory. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1986.

[4] W. A. Gardner. Exploitation of spectral redundancy in cy-
clostationary signals. IEEE Signal Processing Magazine,
8(2):14–36, April 1991.

[5] W. A. Gardner, A. Napolitano, and L. Paura. Cyclosta-
tionarity: Half a century of research. Signal Processing,
86(4):639–697, 2006.

[6] M. Johnson and H. Farid. Exposing digital forgeries by de-
tecting inconsistencies in lighting. In ACM Multimedia and
Security Workshop, New York, NY, 2005.

[7] M. Kirchner. Fast and reliable resampling detection by spec-
tral analysis of fixed linear predictor residue. In Proceed-
ings of the 10th ACM workshop on Multimedia and security,
pages 11–20, New York, NY, USA, 2008. ACM.

[8] S.-H. Lam and C.-W. Kok. Demosaic: Color filter array in-
terpolation for digital cameras. In PCM ’01: Proceedings
of the Second IEEE Pacific Rim Conference on Multimedia,
pages 1084–1089, London, UK, 2001. Springer-Verlag.

[9] B. Mahdian and S. Saic. Detection of copy–move forgery
using a method based on blur moment invariants. Forensic
science international, 171(2–3):180–189, 2007.

[10] B. Mahdian and S. Saic. Blind authentication using periodic
properties of interpolation. IEEE Transactions on Informa-
tion Forensics and Security, 3(3):529–538, September 2008.

[11] E. Meijering. A chronology of interpolation: From ancient
astronomy to modern signal and image processing. Proceed-
ings of the IEEE, 90(3):319–342, March 2002.

[12] D. Menon, S. Andriani, and G. Calvagno. Demosaicing with
directional filtering and a posteriori decision. IEEE Transac-
tions on Image Processing, 16(1):132–141, 2007.

[13] A. Popescu and H. Farid. Exposing digital forgeries by de-
tecting traces of re-sampling. IEEE Transactions on Signal
Processing, 53(2):758–767, 2005.

[14] G. Rohde, C. Berenstein, and D. Healy. Measuring image
similarity in the presence of noise. Proceedings of the SPIE
Medical Imaging: Image Processing, 5747:132–143, Febru-
ary 2005.

[15] E. Serpedin, F. Panduru, I. Sari, and G. B. Giannakis. Bibli-
ography on cyclostationarity. Signal Process., 85(12):2233–
2303, 2005.

284


